Euler Incognito

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2008 J. Phys. A: Math. Theor. 41244009
(http://iopscience.iop.org/1751-8121/41/24/244009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.149
The article was downloaded on 03/06/2010 at 06:54

Please note that terms and conditions apply.

Euler Incognito

Thomas L Curtright ${ }^{1}$ and David B Fairlie ${ }^{2}$
${ }^{1}$ Department of Physics, University of Miami, Coral Gables, FL 33124, USA
${ }^{2}$ Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK
E-mail: curtright@physics.miami.edu and david.fairlie@durham.ac.uk

Received 13 October 2007
Published 3 June 2008
Online at stacks.iop.org/JPhysA/41/244009

Abstract

The nonlinear flow equations discussed recently by Bender and Feinberg are all reduced to the well-known Euler equation after a change of variables.

PACS numbers: $05.45 .-\mathrm{a}, 45.20 . \mathrm{Jj}, 11.30 . \mathrm{Er}, 02.60 . \mathrm{Lj}, 03.50 .-\mathrm{z}$

Consider for $u(x, t)$ the class of nonlinear PDEs introduced and discussed by Bender and Feinberg [1]

$$
\begin{equation*}
u_{t}=\left(u_{x}\right)^{k} u \tag{1}
\end{equation*}
$$

where k is a parameter. (Including phases for the variables requires only minor changes in the discussion to follow.) We are actually interested only in $0 \neq k \neq 1$, since $k=0$ and $k=1$ are easily understood and well known. So, upon changing the dependent variable to

$$
\begin{equation*}
v=\frac{k-1}{k} u^{k /(k-1 t)} \tag{2}
\end{equation*}
$$

equation (1) becomes

$$
\begin{equation*}
v_{t}=\left(v_{x}\right)^{k} . \tag{3}
\end{equation*}
$$

Differentiating this with respect to x and making a further change of variable to

$$
\begin{equation*}
w=k\left(v_{x}\right)^{k-1}=k\left(u_{x}\right)^{k-1} u \tag{4}
\end{equation*}
$$

we find the familiar Euler-Monge equation in the canonical form

$$
\begin{equation*}
w_{t}=w w_{x} \tag{5}
\end{equation*}
$$

Thus for any $k \neq 0$ and $k \neq 1$ the original equation (1) is reduced to Euler's through a change of dependent variable, although for technical reasons that are more or less obvious from the explicit constructions, it is often useful to assume $k>1$. (For $k=1$ of course, (1) is already the Euler-Monge equation without any change of variable.)

As is well-known (cf [1] or [2] for references) the general solution for w is given implicitly by

$$
\begin{equation*}
w=F(x+w t) \tag{6}
\end{equation*}
$$

where F is an arbitrary differentiable function. By using the previous changes of variables and integrating once with respect to x, solutions for v and hence u, follow from those for w. For example, if F is linear, $w=\frac{x-x_{0}}{t_{0}-t}, v=\frac{k-1}{k} \frac{\left(x-x_{0}\right)^{k /(k-1)}}{\left[k\left(t_{0}-t\right)\right]^{1 /(k-1)}}$ and $u=\frac{x-x_{0}}{\left[k\left(t_{0}-t\right)\right]^{1 / k}}$.

Moreover, (1) leads to two infinite families of local conserved currents whose time and space components are powers of u and u_{x}, but not higher derivatives. The first family is quickly seen to be

$$
\begin{equation*}
\left(J_{0}^{(n)}, J_{1}^{(n)}\right)=\left(u^{n} u_{x}, u^{n+1}\left(u_{x}\right)^{k}\right) \tag{7}
\end{equation*}
$$

for any n, not necessarily integer. Obviously, all these currents have simple topological charges. On the solution set of (1), $(n+1) J_{\mu}^{(n)}=\varepsilon_{\mu \nu} \partial^{\nu} u^{n+1}$, and $\partial^{\mu} J_{\mu}^{(n)}=0$ immediately follows. The second family of currents may be obtained from the known (non-topological) conserved currents for w, namely $\left((n+1) w^{n}, n w^{n+1}\right)$, just by changing variables. Thus ${ }^{3}$

$$
\begin{align*}
\left(K_{0}^{(n)}, K_{1}^{(n)}\right) & =\left((n+1)\left(v_{x}\right)^{n(k-1)}, n k\left(v_{x}\right)^{(n+1)(k-1)}\right) \\
& =\left((n+1)\left(u_{x}\right)^{n(k-1)} u^{n}, n k\left(u_{x}\right)^{(n+1)(k-1)} u^{n+1}\right) \tag{8}
\end{align*}
$$

On the solution set of (1), or equivalently (3), it is straightforward to show $\partial^{\mu} K_{\mu}^{(n)}=0$.
Finally, the linearization of (5) as given in [2] can be used to relate the spatial derivative of (3), or equivalently of (1), to a linear equation. Define

$$
\begin{equation*}
\psi(a, x, t) \equiv \frac{1}{a}\left(\exp \left(a k\left(v_{x}\right)^{k-1}\right)-1\right) \tag{9}
\end{equation*}
$$

Technically, it is useful to assume $k>1$ here, especially for slowly varying v. It follows that

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial a \partial x}\right) \psi=\left(v_{t}-\left(v_{x}\right)^{k}\right)_{x} \times k(k-1)\left(v_{x}\right)^{k-2} \exp \left(a k\left(v_{x}\right)^{k-1}\right) \tag{10}
\end{equation*}
$$

Thus $\left(\frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial a \partial x}\right) \psi=0$ iff $\left(v_{t}-\left(v_{x}\right)^{k}\right)_{x}=0$. (If the second factor on the RHS of (10) were to vanish, for both positive and negative a, this would require $k>2, v_{x}=0$, and hence also $\left(v_{t}-\left(v_{x}\right)^{k}\right)_{x}=0$.) Encoding initial data for the nonlinear system in the form (9) therefore allows the data to be evolved linearly. Given a well-behaved solution to the linear equation for ψ, we may then extract the nonlinear data at other times just by taking the limit $v_{x}(x, t)=\left(\frac{1}{k} \lim _{a \rightarrow 0} \psi(a, x, t)\right)^{1 /(k-1)}$. Integrating with respect to x modulo a function of only the time variable yields v, hence u.

Acknowledgments

This material is based upon work supported by the National Science Foundation under grant no. 0555603.

References

[1] Bender C and Feinberg J 2007 Does the complex deformation of the Riemann equation exhibit shocks? Preprint arXiv:0709.2727
[2] Curtright T and Fairlie D 2003 Extra dimensions and nonlinear equations J. Math. Phys. 44 2692-703 (Preprint math-ph/0207008)

[^0]
[^0]: ${ }^{3}$ In terms of u, as $k \rightarrow 1$ we note that $(n+1)(n+2) J_{\mu}^{(n)} \rightarrow \partial_{x} K_{\mu}^{(n+1)} \rightarrow\left((n+2)\left(u^{n+1}\right)_{x},(n+1)\left(u^{n+2}\right)_{x}\right)$.

